Long-term effects of postnatal aluminium exposure on acetylcholinesterase activity and biogenic amine neurotransmitters in rat brain.

نویسندگان

  • S M Ravi
  • B M Prabhu
  • T R Raju
  • P N Bindu
چکیده

The long-term effects of early postnatal exposure to aluminium on acetyl choline esterase (AChE) activity and on biogenic amines were studied in different brain regions. The subjects were eight days old male Wistar rat pups. They were grouped into normal control and aluminium exposed groups. For aluminium exposure, the pups were gastric intubated with aluminium chloride (40 mg/Kg body weight) for two weeks. Control rats were given equal volumes of distilled water. After the treatment, they were rehabilitated for forty days. On the sixtieth day, the rats from both the groups were sacrificed and AChE activity, levels of dopamine, noradrenaline and serotonin were estimated in the cerebral cortex, hippocampus, septum, brainstem and striatum. In the aluminium exposed group: the AChE activity was significantly decreased in the hippocampus, septum, striatum and brainstem; serotonin levels were reduced by 20% in the cortex, hippocampus, septum and striatum; in brain stem, the serotonin level was decreased by 40%. A 60% reduction in noradrenaline levels was observed in the striatum whereas it was reduced by 25% in other regions except in hippocampus. Though dopamine levels were not altered in the cortex, septum and brainstem, they were reduced by 40% in the striatum. The study documents the long-term consequences of exposure to aluminium during the developmental periods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in Catecholamines and Acetylcholinesterase Levels of Crebellum, Mid-brain and Brain Cortex in Chromium Treated Rats

The short and long term effects of chromium toxicity on brain catecholamines and acetylcholinesterase levels were investigated. Rats were injected daily with varying amounts of chromium. The short term (2 h) administration of chromium (8 mmol/kg) reduced catecholamines level of cerebellum, mid-brain and brain-cortex by 22.8, 19.4 and 21.2% respectively. Acetylcholinesterase activity was also re...

متن کامل

Changes in Catecholamines and Acetylcholinesterase Levels of Crebellum, Mid-brain and Brain Cortex in Chromium Treated Rats

The short and long term effects of chromium toxicity on brain catecholamines and acetylcholinesterase levels were investigated. Rats were injected daily with varying amounts of chromium. The short term (2 h) administration of chromium (8 mmol/kg) reduced catecholamines level of cerebellum, mid-brain and brain-cortex by 22.8, 19.4 and 21.2% respectively. Acetylcholinesterase activity was also re...

متن کامل

Long-Term Effects of Maternal Deprivation on Cholinergic System in Rat Brain

Numerous clinical studies have demonstrated an association between early stressful life events and adult life psychiatric disorders including schizophrenia. In rodents, early life exposure to stressors such as maternal deprivation (MD) produces numerous hormonal, neurochemical, and behavioral changes and is accepted as one of the animal models of schizophrenia. The stress induces acetylcholine ...

متن کامل

RAPID EYE MOVEMENT SLEEP DEPRIVATION INDUCES ACETYLCHOLINESTERASE A CTIVITY IN THE PREOPTIC AREA OF THE RAT BRAIN

Acetylcholinesterase (AchE) is a large glycoprotein that, aside from its known cholinolytic activity, co-exists with other transmitter systems and possesses other functions. In the present study, the effects of short-term rapid-eye-movement sleep deprivation (REM-SD) on AchE activity in the anterior hypothalamic area have been investigated. Using the flower-pot method, adult male albino ra...

متن کامل

Catecholamine Contents of Different Region of Adult Rat Brain Are Altered Following Short and Long-term Exposures to Pb+2

Catecholamine is a group of neurotransmitters that is believed to be responsible for the normal function of animal brain. Physiological and behavioral changes of human body have been reported due to the damage of the brain function following lead exposure. Due to the assumption of lead disposal in brain tissue with two year for its half-life, which results in alteration of brain function, we in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Indian journal of physiology and pharmacology

دوره 44 4  شماره 

صفحات  -

تاریخ انتشار 2000